3x^2+5x=291

Simple and best practice solution for 3x^2+5x=291 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+5x=291 equation:


Simplifying
3x2 + 5x = 291

Reorder the terms:
5x + 3x2 = 291

Solving
5x + 3x2 = 291

Solving for variable 'x'.

Reorder the terms:
-291 + 5x + 3x2 = 291 + -291

Combine like terms: 291 + -291 = 0
-291 + 5x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-97 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '97' to each side of the equation.
-97 + 1.666666667x + 97 + x2 = 0 + 97

Reorder the terms:
-97 + 97 + 1.666666667x + x2 = 0 + 97

Combine like terms: -97 + 97 = 0
0 + 1.666666667x + x2 = 0 + 97
1.666666667x + x2 = 0 + 97

Combine like terms: 0 + 97 = 97
1.666666667x + x2 = 97

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = 97 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = 97 + 0.6944444447

Combine like terms: 97 + 0.6944444447 = 97.6944444447
0.6944444447 + 1.666666667x + x2 = 97.6944444447

Factor a perfect square on the left side:
(x + 0.8333333335)(x + 0.8333333335) = 97.6944444447

Calculate the square root of the right side: 9.884050002

Break this problem into two subproblems by setting 
(x + 0.8333333335) equal to 9.884050002 and -9.884050002.

Subproblem 1

x + 0.8333333335 = 9.884050002 Simplifying x + 0.8333333335 = 9.884050002 Reorder the terms: 0.8333333335 + x = 9.884050002 Solving 0.8333333335 + x = 9.884050002 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 9.884050002 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 9.884050002 + -0.8333333335 x = 9.884050002 + -0.8333333335 Combine like terms: 9.884050002 + -0.8333333335 = 9.0507166685 x = 9.0507166685 Simplifying x = 9.0507166685

Subproblem 2

x + 0.8333333335 = -9.884050002 Simplifying x + 0.8333333335 = -9.884050002 Reorder the terms: 0.8333333335 + x = -9.884050002 Solving 0.8333333335 + x = -9.884050002 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -9.884050002 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -9.884050002 + -0.8333333335 x = -9.884050002 + -0.8333333335 Combine like terms: -9.884050002 + -0.8333333335 = -10.7173833355 x = -10.7173833355 Simplifying x = -10.7173833355

Solution

The solution to the problem is based on the solutions from the subproblems. x = {9.0507166685, -10.7173833355}

See similar equations:

| -4(9z-8)= | | 4-(x+14)=3x-2 | | n/20=20 | | 8(c+2)= | | (x+1)(x+1)=-19 | | 10x^4-9x^2y-9y^2=0 | | X=-3/2y^2 | | b/3=27 | | -7x-y=23 | | 6/7÷2 | | x^2-50x+125=0 | | 4x-7=16-69 | | 9x+3-8x+8=24 | | n/16=1 | | -4x+3=-7x+15 | | y=2sin(4x)+3 | | 4x+3x=13+19 | | -7(6k-4)-7k= | | 88000+20x=30x | | (6x^2+7x-5)-(3x^2+2x-7)= | | 0=4x^3+2x-5 | | 5(3w)= | | 5x+x=4x-7 | | -12+7x^2=0 | | 14a-13=11a+2 | | 10x-20=-20x | | 20a+17=13a-18 | | -5(t-9)= | | -3/1.75x=19 | | w-3=4w | | 21a+6=17a+34 | | -7x-3=-45-x |

Equations solver categories